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What do heat conduction, quantized energy levels,
stock prices, DNA sequences, and the beating of the heart
have in common? Their behavior may be modeled by
diffusion-like relations. While some of these processes
are already discrete in their nature, diffusion is conven-
tionally considered to be continuous in time. However,
in practice any measurements must be carried out at dis-
crete time intervals of finite length, yielding time series
of measurements. This lends itself to the atomistic view-
point of diffusion where “particles”, whatever they may
be, can be understood to undergo the steps of a random
walk within the time intervals. The details of any inter-
actions are hidden inside the probability distributions of
the steps. Uncorrelated normally distributed steps lead
to ordinary Brownian motion, whose expected end-to-
end distances, or root-mean-squared displacements, ∆x
scale proportionally to the square root of the number of
steps s taken. Correlations, on the other hand, intro-
duce memory effects with positive and negative corre-
lations leading to super- and subdiffusion, respectively.
The expected displacements of this anomalous diffusion
are characterized by power law relations 〈∆x〉 ∝ sα with
scaling exponents α greater or less than 1/2.

The straightforward determination of these exponents
from the displacements has several shortcomings. For ex-
ample, measuring the literal displacements is not very ro-
bust, as these are plagued by huge variations and usually
by measurement noise as well. Many phenomena are also
influenced by other non-diffusive effects, such as convec-
tion, which are composed into the random walk as exter-
nal trends. These trends are problematic, as they lead to
spurious detection of correlations. Detrended fluctuation
analysis (DFA) attempts to overcome these difficulties in
a systematic manner [1, 2].

The DFA algorithm takes the steps of a random walk
as input, from which the walk is constructed as their
cumulative sum. To estimate the displacement ∆x(s) af-
ter s steps, the walk is divided into windows of length
s. Within each window local trends are determined by
least-squares fits of low-degree polynomials, which are
then subtracted to obtain the detrended walk. Their vari-
ances are averaged over all the windows, yielding the dis-
placement as its square root. In the context of DFA, the
estimated expectation value of this root-mean-squared
detrended displacement is called the fluctuation function
F (s). Power laws F (s) ∝ sα are transformed into linear
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relationships on a logarithmic scale, where the scaling ex-
ponent α is conveniently determined by linear regression.

An important consequence of the detrending step is
that it increases the maximal detectable exponent from
1 to n+1, where n is the degree of the detrending polyno-
mial. This is necessary for the analysis of complex signals
that could be comprised of both stationary (α < 1) and
non-stationary (α > 1) regions. While the detrending
also acts akin to a regularizer, increasing the robustness
of the method [3], it also introduces bias to the estimates,
particularly at the shortest scales.

In practice, however, most phenomena deviate from ex-
act power law scaling, or the behavior may change when
observed at different scales. This is also evident in some
models, such as Lévy flights or autoregressive processes,
whose long scale asymptotic behavior differs from shorter
scale details. Therefore, it is instructive to consider sys-
tematic methods for determining scale-dependent scaling
exponents, which is a major topic considered in my thesis
[4]. This could be accomplished by attempting to parti-
tion the fluctuation function into approximately scaling
regions yielding piecewise defined exponents. Another
approach, that is focused on here, considers a full spec-
trum of exponents α(s) as a function of the scale s. This
method is based on the notion that the exponent can be
defined as the local slope of the logarithmic fluctuation
function: α(s) = d logF (s)/d log s. Direct differentiation
is not usually feasible, as the fluctuation function can be
very noisy.

I have attempted to tackle this problem in a parameter-
free manner by proposing an estimator based on Kalman
filter and smoother [4, 5]. The Kalman filter [6] provides
an efficient, recursive, solution to a linear state-space esti-
mation problem where both the state and measurements
are disturbed by Gaussian noise. In this particular ap-
proach the state consists of the logarithmic fluctuation
function and its the derivatives at a particular scale. The
values of the fluctuation function at each scale are consid-
ered the measurements, whose error estimates are based
on the standard error of the mean. The model assumes
that the function remains constant, except the highest
order derivative is disturbed by noise whose strength is
derived from the data. The Kalman smoother [7] im-
proves the estimate by utilizing all the measurements for
the state estimates at each scale.

Instead of focusing on asymptotics or scale-averaged
results, the full scaling spectra may yield new insights
about the underlying mechanics of the studied processes.
It is also possible to compute the exact theoretical scale-
dependent response of DFA to different models, if the
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processes or their increments are stationary [4, 8, 9]. An
example is shown in Fig. 1(a), where the theoretical scal-
ing exponent is shown for an AR1 process as a function
of the scale s and the autoregressive parameter φ1. To-
gether with the robustness of DFA, this could be fruitful
for, e.g., parameter estimation or choosing between dif-
ferent models for anomalous diffusion. Furthermore, the
short-scale bias from detrending could be accounted for.

The scaling may also exhibit temporal variations due
to changes in external conditions, or the process itself
may be comprised of distinct intrinsic modes. Straight-
forward segmentation of the time series suffers from the
following limitation: The length of the segments, and
hence the temporal resolution, is dictated by the largest
scale to guarantee sufficient statistical accuracy. This led
to the development of dynamic DFA that adopts a scale-
dependent segmenting procedure to keep the accuracy
approximately constant and letting the temporal reso-
lution vary [10, 11]. The method yields point estimates
α(t, s) for the scaling exponent as a function of both time
and scale.

To maximize the temporal resolution, it is necessary
to accurately estimate the scaling exponent with min-
imal data. Conventionally the DFA fluctuation func-
tion is estimated by computing the variances of the de-
trended walk in non-overlapping windows at each scale.
However, performing the calculations in maximally over-
lapping windows improves the statistical accuracy at in-
creased computational cost [12]. Another advantage is
that fluctuation functions computed from these overlap-
ping windows are generally smooth enough to permit di-
rect numerical differentiation [11], but to keep the com-
putations feasible, particularly for longer data and larger
scales, specialized algorithms must be utilized [13].

The described methodology is applicable to any series
of measurements in wide array of disciplines, but so far
my research on this topic has mostly focused on heart
rate variability (HRV). The beating of the heart consti-
tutes a complex system with consecutive heart beats, or
RR-intervals (RRIs), showing fractal-like patterns. In a
healthy individual the RRIs exhibit long-range correla-
tions, which are altered by disease, sleep and exercise
[14–16]. The addition of scale-dependence into the anal-
ysis enhances the detection and classification of different
heart diseases [4, 5]. This scale-dependent behavior is

illustrated in Fig. 1(b), where it is clear that particularly
in congestive heart failure the behavior would not be ad-
equately described the conventional (in HRV analysis)
short- (4–16 RRIs) and long-range (16–64 RRIs) scal-
ing exponents. Ongoing research studies whether these
results can be further improved by considering also tem-
poral variations in the correlations, and in particular if
there exist characteristic transient changes due to dis-
ease. This could especially allow distinguishing healthy
individuals from those suffering from ST episodes.

The high temporal resolution attained by the dynamic
DFA also permits the accurate determination of the dis-
tributions of the scaling spectra under various circum-
stances. This was found to be useful in classifying differ-
ent sleep phases based on the RRI correlations, as also
the variance in the scaling spectra proved to be a descrip-
tive feature [10]. An excerpt of a correlation landscape
during sleep is depicted in Fig. 1(c). There appears to
be a clear trend according to the sleep phases, but the
intra-phase variance complicates the analysis.

The dynamics are also important in constantly chang-
ing fast-paced activities, such as sports. Recently we have
demonstrated that the correlations in the RRIs display
complex changes as a function of exercise intensity [11].
Figure 1(d) graphs the dynamic correlations as a function
of the heart rate, averaged over many running exercises.
An example of an individual marathon run (for a different
person) is shown in Fig. 1(e). It is again evident that the
complex correlations benefit from a more complete de-
scription than is provided by the conventional two-range
HRV scaling exponent model. These results are antici-
pated to facilitate the optimization of training programs
and provide more accurate real-time feedback about ex-
ercise intensity without the knowledge of the maximal
heart rate. Furthermore, it could be possible to deduce
quantities such as the anaerobic threshold or maximal
oxygen uptake from these dynamical RRI correlations.

This article is in part motivated by introducing po-
tentially useful computational tools into the physicist’s
toolkit that may not be well known. The multidisci-
plinary nature of my research is also manifested in the
collaborative work I am involved within the research
group. The methods are utilized for analyzing the quan-
tized energy spectra of classically chaotic systems [17],
stock market analysis, and gene informatics to name just
a few examples.
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Figure 1. Examples of results. (a) The theoretical DFA scaling exponent in AR1-process as a function of the scale and the
autoregressive parameter. (b) The mean scaling spectra in different heart conditions with the standard error of the mean (solid
bounds) and standard deviation (dashed bounds). AF = Atrial Fibrillation, CHF = Congestive Heart Failure, ST ep. = episodic
ST segment variations. (c) Dynamic correlation landscape of RRIs during sleep with the instantaneous beat rate overlaid on
the data. The sleep phases were determined by a sleep physician from polysomnography. (d) Dynamic RRI correlations of an
experienced runner as a function of the heart rate averaged over many running exercises. The conventional short-range (4–16
RRIs) scaling exponent α1 is overlaid on the data, along with its standard error (thick error bars, hardly visible) and standard
deviation (thin error bars). (e) Dynamic RRI correlation landscape during a marathon run with the instantaneous heart rate
overlaid on the data.
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